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Abstract
Self-supervised facial representation learning (SFRL) methods, especially contrastive learning (CL) methods, have been
increasingly popular due to their ability to perform face understanding without heavily relying on large-scale well-annotated
datasets. However, analytically, current CL-based SFRL methods still perform unsatisfactorily in learning facial representa-
tions due to their tendency to learn pose-insensitive features, resulting in the loss of some useful pose details. This could be
due to the inappropriate positive/negative pair selection within CL. To conquer this challenge, we propose a Pose-disentangled
Contrastive Facial Representation Learning (PCFRL) framework to enhance pose awareness for SFRL. We achieve this by
explicitly disentangling the pose-aware features from non-pose face-aware features and introducing appropriate sample cal-
ibration schemes for better CL with the disentangled features. In PCFRL, we first devise a pose-disentangled decoder with
a delicately designed orthogonalizing regulation to perform the disentanglement; therefore, the learning on the pose-aware
and non-pose face-aware features would not affect each other. Then, we introduce a false-negative pair calibration module to
overcome the issue that the two types of disentangled features may not share the same negative pairs for CL. Our calibration
employs a novel neighborhood-cohesive pair alignment method to identify pose and face false-negative pairs, respectively, and
further help calibrate them to appropriate positive pairs. Lastly, we devise two calibrated CL losses, namely calibrated pose-
aware and face-aware CL losses, for adaptively learning the calibrated pairsmore effectively, ultimately enhancing the learning
with the disentangled features and providing robust facial representations for various downstream tasks. In the experiments,
we perform linear evaluations on four challenging downstream facial tasks with SFRL using our method, including facial
expression recognition, face recognition, facial action unit detection, and head pose estimation. Experimental results show that
PCFRL outperforms existing state-of-the-art methods by a substantial margin, demonstrating the importance of improving
pose awareness for SFRL. Our evaluation code and model will be available at https://github.com/fulaoze/CV/tree/main.
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1 Introduction

Learning facial representations is an important task in com-
puter vision. With the ability to analyze faces, we can obtain
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various information like identities, emotions, and gestures,
which lead to rich applications in various domains like facial
expression recognition, face recognition, human-computer
interaction, head pose estimation, and emotion analysis.
Recently, deep convolutional neural networks (DCNNs)
(Gamble and Huang, 2020; Zhao et al., 2016) have achieved
promising facial understanding results, but they heavily rely
on large, well-labeled data for supervised learning, which
requires substantial manual annotation efforts and may not
generalize well on other datasets. Instead of using well-
labelled datasets, in recent years, self-supervised learning
(SSL) has emerged as a promising alternative to train visual
representation models without explicit annotations.

Current self-supervised facial representation learning
(SFRL) approaches (Chen et al., 2020; Li et al., 2019; He et
al., 2020) widely apply contrastive learning (CL) strategy. In
a typical CL-based SFRL method, researchers first leverage
pre-defined data transformations to create positive and nega-
tive samples, i.e., augmentations of the same image generate
positive samples, and different other images are represented
as negative samples. Then, the CL-based SFRL method will
pull two features representing the same type of samples closer
to each other and push those of different types far away from
each other (Li and Shan, 2023; Madhusudana et al., 2022),
contrasting the learning on positive and negative samples.
This allows models to learn meaningful visual representa-
tions from unlabeled data. Using this methodology, existing
CL-based SFRL methods (Roy and Etemad, 2021; Shu et
al., 2022) have achieved promising performance on learning
from unlabelled face images. This method also illustrates
descent generalization abilities to downstream face-related
tasks (Shu et al., 2022).

Despite progress, we found that utilizing the vanilla CL-
based SFRL methods could be still sub-optimal due to the
variances in facial poses. Specifically, existing approaches
use an instance-level positive/negative pair selection strat-
egy, i.e., augmentations like image flipping to help generate
the collection of positive sample pairs and other different
face images as negative pairs. In such a manner, a model
would learn pose-insensitive representations from the posi-
tive pairs, making the recognition and appropriate handling
of the facial pose variances very challenging. Nevertheless,
we argue that pose information is of great importance for
robust facial understanding (Samanta and Guha, 2017); for
example, when a person would likely lower their head when
they express sadness on the face. Therefore, we propose to
enhance the pose awareness for SFRL, so that the learning on
both pose-aware features and non-pose face-aware features
would not affect each other and facial understanding can be
improved promisingly. Figure1 shows an overview of our
motivation.

By addressing the above problem for enhancing pose
awareness, we propose a novel Pose-disentangled Con-

Fig. 1 As shown in (a), affected by different poses, thewidely used con-
trastive learning (CL) methods, such as SimCLR, treat pose and other
facial information uniformly, which may lead to suboptimal results. To
alleviate this problem, our PCFRL—an extended version of our con-
ference method (PCL)—first disentangles pose-aware and non-pose
face-aware features and then calibrates face and pose false-negative
pairs for more efficient calibrated pose-aware CL and calibrated face-
aware CL, respectively. As shown in (b), our PCFRL enhances pose
awareness for SFRL and improves face understanding performance
promisingly

trastive Facial Representation Learning (PCFRL) framework
in this study. In general, the PCFRL first disentangles pose-
aware features from non-pose face-aware features and then
introduces amore appropriate pair calibration scheme to aug-
ment the CL on both types of features. To achieve this, we
devise a three-component framework. The first component
is to disentangle pose-aware and non-pose face-aware fea-
tures so that the learning of these features does not affect
each other. With the disentangled features, we observe that
the same pose or person might generate false negative sam-
ple pairs, which may introduce significant confusion for
CL. For example, two images from different persons with
a shared pose would be initially selected as a negative pair,
which is inappropriate for CL on the pose-aware features;
meanwhile, choosing two different images with the same
person as a negative pair is also inappropriate for CL on
the face-aware features. Therefore, to overcome the issue,
the second component, namely false-negative pair calibra-
tion module, employs a novel neighborhood-cohesive pair
alignment (NPA) method to further refine the pose and face
positive/negative sample pair selection for contrastive learn-
ingwith the disentangled featuresmore appropriately. Lastly,
we devise two calibrated CL losses for adaptive learning on
the calibrated sample pairs, obtaining the third component in
this framework which ultimately enhancing the pose aware-
nesss SFRL for downstream tasks.

It is worth mentioning that this study is an extended
version of our conference paper, PCL (Pose-disentangled
Contrastive Learning) (Liu et al., 2023) published in CVPR
2023. In our original PCL paper, we primarily introduced
an effective pose disentanglement algorithm for contrastive
learning. In this extended study, we identified that the orig-
inal PCL method suffers from inaccurate positive/negative
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pait selection after disentanglement. Accordingly, we pro-
pose the NPA and calibrated CL losses to tackle this issue,
which further promisingly improve our original method.

Overall, the contributions of this paper are listed as fol-
lows:

1. We propose a novel framework, PCFRL, to effectively
enhance the pose awareness of SFRL. We demonstrated
that enhancing pose awareness is important for robust
SFRL performance.

2. Compared to our conference version (Liu et al., 2023), we
introduce a false-negative pair calibration module for the
SFRL with disentangled features. Specifically, we intro-
duce an effective neighborhood-cohesive pair alignment
method to help identify false negative pairs formore effec-
tive contrastive learning on both pose-aware and non-pose
face-aware features.

3. Furthermore, we devise calibrated CL losses, incorpo-
rating the calibrated pairs (i.e., false-negative pairs) for
calculating the contrastive loss, resulting in two new
specifically calibrated pose-aware and face-aware loss
functions for SFRL. These losses dynamically opti-
mize the calibrated pairs through an adaptive weighting
scheme, ultimately enhancing the learningof robust, pose-
aware self-supervised facial representations.

4. We performed extensive experiments to demonstrate the
significant advantages of PCFRL over our conference
version method. Moreover, we also illustrate the superi-
ority of PCFRL over existing compelling SFRL methods
on several downstream tasks, including facial expres-
sion recognition (FER), facial action unit (AU) detection,
facial recognition (FR), and head pose estimation (HPE),
accessing state-of-the-art performance.

2 RelatedWork

2.1 Self-supervised Facial Representation Learning

Self-supervised facial representation learning is an impor-
tant task in computer vision. It aims to automatically learn
valuable features from unlabeled facial image data without
relying on manually added labels. These learned features
can be applied to a variety of facial-related tasks such
as facial expression recognition (FER), face recognition
(FR), facial action unit (AU) detection, and more (Chang
et al., 2021; Jakab et al., 2018; Li et al., 2019). Zhao
et al. (2015) proposes a new facial expression recogni-
tion method based on deep learning by combining deep
belief networks (DBN) with multi-layer perceptrons (MLP).
FAb-Net (Jakab et al., 2018) has been particularly success-
ful in the FER task by utilizing motion variations across
frames in a video to obtain facial motion features. The Twin-

Cycle Autoencoder, proposed by Li et al. (2022, 2019), is
designed to separate facial action-related movements from
head movement-related movements. This separation results
in robust facial emotion representations that have been
demonstrated to be effective in self-supervised AU detec-
tion. Shu et al. (2022) utilizes three sample mining strategies
within the context of contrastive learning, aiming to obtain
features related to facial expressions. PCL, proposed by Liu
et al. (2023), decouples facial expression and pose informa-
tion, and devises pose-related contrastive learning to extract
robust unsupervised facial representations. These methods
commonly face an issue when applying contrastive learning,
where they construct positive–negative sample pairs by con-
sidering augmented versions of the same image as positives
and other images as negatives. However, they often overlook
the side effects of false-negative pairs belonging to the same
category.

2.2 Contrastive Learning

Contrastive Learning (CL) is a self-supervised learning
method that learns useful feature representations by train-
ing models to bring similar samples closer together and push
dissimilar samples away. SimCLR (Chen et al., 2020) pro-
poses to use data augmentation to generate sample pairs and
then train the network by maximizing their similarity. MoCo
(He et al., 2020) increases the number of negative samples in
contrastive learning bymaintaining a negative sample queue.
Chen and He (2021) proposed the SimSiam method to avoid
collapsing solutions by maximizing two data augmentation
images of a picture. These methods make use of data aug-
mentation, contrast loss, momentum encoders, and memory
banks to enhance representation learning on unlabeled data.
Recently, there are methods such as Dwibedi et al. (2021);
GE et al. (2023); Shu et al. (2022) that address the issue of
treating samples of the same category as negative samples
in CL by identifying false negative samples through nearest
neighbor analysis.

2.3 Nearest Neighbor Exploration in Visual
Recognition

Many computer vision tasks have made wide use of Near-
est Neighbor (NN) algorithm, such as image classification
(McCann and Lowe, 2012), object detection/segmentation
(Harini and Chandrasekar, 2012), and domain adaptation
(Yang et al., 2021). It is commonly used to explore the
comprehensive relationships between samples, providing
convenience for various computer vision tasks.

In the field of self-supervised learning, there are also
emerging methods that investigate the use of the NN algo-
rithm. For instance, in CL frameworks, SwAV (Caron et
al., 2020) employs a method different from direct feature
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comparison by additionally constructing prototype feature
clusters to maintain consistency between sample features
and representations. NNCLR (Dwibedi et al., 2021) uses
an explicit support set to find nearest neighbors. SNCLR
(GE et al., 2023) uses an attention module to get the correla-
tion between the neighbors and the current sample. Overall,
these methods have achieved certain success in using cosine
similarity to determine neighbor positions. However, there
still exists a considerable gap between the data similarity
at that time and the true similarity obtained from labels.
This can potentially affect the learning of nearest neighbor
relationships during the training process, thereby influenc-
ing the quality and performance of representation learning.
Therefore, accurately estimating the similarity between data
samples remains a promising direction for further enhancing
the effectiveness of self-supervised learning methods.

3 Method

3.1 Overview

The overview of our proposed Pose-disentangledContrastive
Facial Representation Learning (PCFRL) framework is illus-
trated in Fig. 2. We devise a three-component framework
for PCFRL. The first component disentangles pose-aware
features from non-pose face-aware features based on our
previous work, PCL (Liu et al., 2023). After feature dis-
entanglement, we observe that the same person or pose
might generate false negative sample pairs for CL, which
may introduce significant confusion. To address this, we
introduce a false negative pair module as the second com-
ponent to further improve the learning procedure based on a
novel neighborhood-cohesive pair alignment (NPA) method.
Lastly, the third component includes two calibrated CL
losses, namely pose-aware calibrated CL loss and face-aware
calibrated CL loss, for learning with pose-aware features and
non-pose face-aware features. The calibratedCL losses adap-
tively optimize the model with calibrated false negative pairs
based on the NPA results, further reducing the risk of confu-
sion that would affect learning procedures. In the following
sections, we first briefly review the PCL method (Liu et al.,
2023), and then introduce the details of the other components
in our PCFRL framework, including false-negative pair cal-
ibration and modified CL losses.

3.2 Revisiting PCL

In our original study, PCL (Liu et al., 2023), we predomi-
nantly seek to develop an effective feature disentanglement
mechanism for improving the CL on both pose-related infor-
mation and pose-unrelated face information. To achieve this,

we introduced a pose decoupling decoder (PDD) for the pose
disentanglement.

Specifically, the PDD identifies and separates pose-related
face features from pose-unrelated face features based on rep-
resentation reconstruction. The general concept is to make
sure that the same face image with a different pose can be
reconstructed based on the new pose feature and the origi-
nal non-pose face feature. As a result, the pose feature would
becomemore sensitive to pose changes and the non-pose face
feature would be consistent after pose alteration, thereby sat-
isfying the disentanglement purpose.

Mathematically, we denote a face image as s with a pose
p. We then transform p using some augmentation techniques
like flipping, obtaining the pose-augmented face image ŝ
with the new pose p̂. By taking s as input, the PDD will
tend to extract a pose-aware feature �Fp and a non-pose face-
aware feature �F f . Similarly, if taking ŝ as input, we can have
extracted features �Fŝ and �Fp̂, respectively. Subsequently, we
introduce a series of reconstruction objectives, forming:

Ldis = ||s − D( �F f , �Fp)||1 + ||ŝ − D( �F f , �Fp̂)||1
+ ||s − D( �F f̂ ,

�Fp)||1 + ||ŝ − D( �F f̂ ,
�Fp̂)||1,

(1)

where || · ||1 represents l1-norm, D is the additional recon-
struction network that is used to translate the extracted two
types of features into the reconstructed face.

In addition to the above-mentioned reconstruction loss,
we further introduce an orthogonal loss to make the disen-
tangled pose-aware feature and non-pose face-aware feature
orthogonal to each other, minimizing the possibility that both
types of features contain redundant information. This loss is
written as:

Lorth = 1

N

(
N∑

i=1

|| �F f · �Fp||22 +
N∑

i=1

|| �F f̂ · �Fp̂||22
)

, (2)

where N is the number of samples in a training batch.
With loss functions defined inEqs. 1 and2,we can train the

PDD using the sum of the two losses: L P DD = Ldis + Lorth .
The PDD can be optimized to disentangle pose-aware fea-
tures from non-pose face-aware features effectively, which
further improves contrastive learning-based SFRL perfor-
mance.Our original studyproves that thismechanismalready
achieves promising improvement on several downstream
tasks. For more details, we refer readers to the Liu et al.
(2023).

3.3 False-negative Pair Calibration for Disentangled
Features

Following the disentanglement of pose-aware features and
non-pose face-aware features, our original PCLwork directly
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Fig. 2 Detailed pipeline of our proposed PCFRL for pose-aware self-
supervised facial representation learning. Building upon the PDD, we
first disentangle the pose-aware features from non-pose face-aware fea-
tures. Then, we further introduce the false-negative pair calibration
module to calculate the neighbor-cohesive pair alignment (NPA) scores,

resulting in the calibrated pose-aware and face-aware false-negative
pairs, respectively. Moreover, with the calibrated false-negative pairs,
we devise two calibrated CL losses, namely calibrated pose-aware CL
and face-aware CL, to facilitate the development of more robust pose-
aware facial representation

applies contrastive learning (CL) to both types of features. In
a typical CL procedure, sample selection is used to generate
positive and negative pairs for learning. In particular, a pair of
samples from the augmentation of the same image is usually
considered a positive pair, while a pair of samples from dif-
ferent images is a negative pair. However, drawing negative
pairs from different images would be unsatisfactory. Specif-
ically, the selected positive and negative pairs for CL should
be different for learning with pose-aware features and non-
pose face-aware features. Intuitively, the pose-aware features
should favor the pairs of samples with the same pose as pos-
itive pairs and others as negative pairs, while the non-pose
face-aware features should consider the pairs of sampleswith
the same facial characteristics as positive pairs and others as
negative pairs. If we only use shared positive and negative
pairs, the CL on both types of features could be compromised
due to potentially significant confusion. For example, the two
images from different persons with a shared pose would be
selected as a negative pair which is inappropriate for CL
on pose-aware features. It is worth noting that the pairs that
should be calibrated only come from the negative pairs. This
is because we can correctly generate positive pairs based on
augmentation operations, while it is difficult to ensure cor-
rect negative pairs when using different images in a batch. To
avoid this, we need to identify incorrect negative pairs and
calibrate them into positive pairs.

In general, to identify and calibrate these false-negative
pairs, we propose a neighborhood-cohesive pair align-
ment (NPA) method. The NPA method first estimates the
neighborhood-cohesive pair alignment scores for negative
pairs obtained using a typical sample selection procedure.
Then, using the pair alignment scores, we identify false-
negative pairs. Subsequently, we introduce a thresholding-
based false-negative pair calibration algorithm to calibrate
the identified false-negative pairs into positive pairs.

False-negative Pairs According to the above discussion,
we formulate false-negative pairs as inappropriate negative
pairs forCL regarding either pose-aware features or non-pose
face-aware features.

Neighborhood-cohesive Pair Alignment Score Our false-
negative pair calibration mechanism is mainly based on the
estimation of an alignment score between a pair of samples.
Specifically, using the positive/negative pairs obtained in typ-
ical CL procedures and our original PCL paper, we tend to
align two samples in a negative pair. If we find that the two
samples in a negative pair align with each other, we then tend
to consider this pair as a false-negative pair which can be cal-
ibrated to a positive pair. To achieve sample alignment, we
introduce the NPA procedure.

The introduction of NPA is inspired by the near-neighbor
relation learning in graph model (Yu et al., 2021), which
validates that if samples “A” and “B” are both consistent with
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sample “C”, samples “A” and “B” can also be considered as
consistent. In our framework, we use both cosine similarity
and the neighborhood samples (i.e., other samples in the same
batch) to generate an alignment score between sample “A”
and sample “B” in a negative pair. Then, a high alignment
score can suggest that “A” and “B” in a negative pair are
likely to contain similar information. Mathematically, our
NPA calculates the alignment score according to:

P A
(
vi , v j

) = cos
(
vi , v j

) + αN S
(
vi , v j

)
, (3)

where P A denotes the pair alignment score, cos represents
a cosine similarity, N S represents a neighborhood-cohesive
sample consistency score, and α is a trade-off parameter that
determines the importance of N S over cos.

The cosine similarity between a pair of samples, e.g., the
i-th and j-th sample, can be calculated based on their corre-
sponding feature vectors vi and v j :

cos
(
vi , v j

) = vT
i v j

‖vi‖2‖v j‖2
, (4)

where ‖‖2 is the L2-norm of vectors, and vT
i is the transpose

of the vi .
We formulate the neighborhood-cohesive sample consis-

tency estimation as the following procedure:

N S(vi , v j ) =
2N∑

k �=i, j

cos (vi , vk) cos
(
vk, v j

)
, (5)

where 2N is the total number of faces and their augmented
samples in a training batch, and i, j, k index the samples
in the training batch. The calculation procedure of NPA is
briefly shown in Fig. 3.

Using Eq. 3, we can calculate the pair alignment score
appropriately. Considering that we disentangled pose-aware
features �Fp from non-pose face-aware features �F f , we use
�Fpi , �Fp j to represent the pose-aware features of i-th and j-th
samples in the same batch, respectively. Then, by substituting
vi and v j in Eq.3 with �Fpi and �Fp j , we obtain the pair align-
ment between the pose-aware features extracted from the
i-th and j-th samples. Similarly, the pair alignment between
non-pose face-aware features of i-th and j-th samples can
be estimated by substituting vi and v j in Eq. 3 with �F fi and�F f j , respectively.

Discussion 1: Relation to Common Similarity Estimation.
According to Eq. 3, our pair alignment score uses a cosine
similarity and a neighborhood-cohesive sample consistency
score, as shown in Fig. 3. We would like to mention that this
is not the same as a common similarity estimation procedure.
Although common similarity scores like cosine similarity can
provide a promising estimation of whether two samples have

similar information, these similarity calculations might be
ambiguous or not sufficiently discriminative for the disentan-
gled features. In particular, using the disentangled high-level
feature vectors may make cosine similarity difficult to depict
intricate and subtle differences in factors like facial attribu-
tions, illumination, and so on. In high-dimensional spaces,
many vectors that are supposed to be different might appear
similar. For example, in a true-negative pair with two images
of different persons, the two imagesmay have the same light-
ing conditions, and the cosine similarity might generate a
considerably high similarity score thatwould lead to inappro-
priate calibration. As a result, despite many existing methods
(Dwibedi et al., 2021; GE et al., 2023) that primarily rely on
cosine similarity (Rahutomo et al., 2012) to estimate sim-
ilarities between two samples, we propose that comparing
with the neighborhood samples can provide a more holis-
tic estimation of sample alignment. Neighborhood samples
would add an extra layer of discrimination by considering
the collective relationships among samples, which could be
particularly beneficial for the disentangled features.

Discussion 2: Relation to Near-neighbor Relation Learn-
ing. The difference between Eq. 5 and the near-neighbor
relation learning in graph model (Yu et al., 2021) is that
we do not consider cosine between i-th and j-th sample.
We design this for two reasons. Firstly, excluding cosine
between i-th and j-th sample enhances the coherence esti-
mation among i-th or j-th sample and other samples, which
can alleviate the limitations of cosine between i-th or j-th
sample themselves as discussed previously. This could con-
sider the broader context in relation to other samples in the
dataset, not just the pairwise relationship. Secondly, as writ-
ten in Eq. 3, we weightly sum the NS and cosine between the
i and j sample, which enables us to adjust the importance of
Eq. 5 over Eq. 3 via α.

Thresholding-based False-negative Pair CalibrationWith
the calculation of neighborhood-cohesive pair alignment
scores based on Eq. 3, it is then possible to identify false-
negative pairs. If the i-th and j-th sample are from different
images but has a high alignment score, we then consider them
as a false-negative pair and calibrate them to a positive pair.

To perform the calibration, we introduce a thresholding-
basedprocedure.Our detailed procedure is as follows. Firstly,
we split the samples of a batch into two groups: Group A
contains the samples that will be augmented to generate pos-
itive pairs; Group B contains the samples that are different
from Group A samples. Typically, when generating negative
pairs, a sample i ′ from Group A and a sample j ′ from Group
B will form a negative pair. To identify false-negative pairs,
we first draw a sample i ′ from Group A and compare it with
all the samples from Group B according to our proposed
NPAmethod described in Eq. 3, obtaining a set of pair align-
ment scores {P A(vi ′ , vk′)|i ′ ∈ A}. We then find the negative
sample k′

m from Group B that has the maximum similarity
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Fig. 3 Conceptual comparison between the cosine similarity and
our proposed neighborhood-cohesive pair alignment score. a Cosine
similarity access the face relationship between two samples. b Our
neighborhood-cohesive pair alignment score measures the face rela-
tionship by using all neighbor samples’ similarities in a training batch.

Provide an example in (b) to illustrate. First, according to Eq. 5, calcu-
late the dot product of the cosine similarity between samples i and j and
other samples to obtain NS. Then, according to Eq. 3, add the result to
the cosine similarity between these two samples to obtain NPA

score with i ′: k′
m = argmax({P A(vi ′ , vk′)|k′ ∈ B}). If this

maximum pair alignment score P A(vi ′ , vk′
m
) is larger than

a threshold T , we then calibrate (i ′, k′
m) from the negative

pair to both the positive pair and the calibrated pair (see the
P and C in Algorithm 1). Otherwise, we follow the typi-
cal procedure and randomly draw a sample j ′ from Group
B to form a negative pair with i ′. We present detailed steps
in Algorithm 1. It is worth mentioning that the disentangled
pose-aware features and non-pose face-aware features need
to calibrate their negative pairs respectively. Regarding this,
the Algorithm 1 will run twice, once for pose-aware learning
and once for non-pose face-aware learning. Also note that the
neighborhood cohesive calculation as described in Eq. 5 will
be calculated across all the samples in the batch, containing
both Group A and Group B samples.

Discussion 3: Compared to Other Calibration Meth-
ods. Other methods like Dwibedi et al. (2021) identify the
negative pairs with the top-K neighbor coherence values as
false-negative pairs and calibrate these pairs into positive
pairs accordingly. However, we found that the existing top-
K false negative pair calibration mechanisms are not optimal
for the disentangled features in our framework. Firstly, the
top-Kmechanismdoes not explicitly account for actual align-
ment scores and always calibrates K samples, which may
also calibrate the true negative pairs that should remain as
negative. Secondly, since the K is fixed, this may either not
cover all the false negative pairs or cover too many negative
pairs. Although top-K methods may be effective for general
contrastive learning, it is not appropriate for our disentangled
features, since the pose-aware pairs and non-pose face-aware
pairs would suffer differently from the false-negative pair
problem.Alternatively, our devised thresholding-based false-
negative pair calibration mechanism relies on appropriate

Algorithm 1. False-negative Pair Calibration.
Input:
A random sample i ′ from Group A (group of samples to be
augmented) in a training batch;
Group B samples (samples not in Group A) in the same training
batch;
Current set of negative pairs for CL denoted as N ;
Current set of positive pairs for CL denoted as P;
Current set of calibrated false-negative pairs, C.
Output:
Updated set of negative pairs, N ;
Updated set of positive pairs, P;
Updated set of calibrated false-negative pairs, C;

1 Compute neighborhood-cohesive pair alignment scores based on
Eq. 3, obtaining {P A(vi ′ , vk′ )|k′ ∈ B};
k′

m ← argmax{P A(vi ′ , vk′ )|k′ ∈ B};
if P A(vi ′ , vk′

m
) ≥ T then

2 P ← P ∪ (i ′, k′
m);

C ← C ∪ (i ′, k′
m);

3 else
4 Randomly draw a sample j ′ from Group B;

N ← N ∪ (i ′, k′)
5 end
6 return P , N , C

alignment scores and can bemore adaptable to different types
of pairs (e.g., pose-aware pairs and non-pose face-aware
pairs). We will discuss the difference between the top-K
method and our thresholding-based method in the Experi-
ment section.

3.4 Contrastive Learning with Calibrated Pairs

Although contrastive learning can be directly applied to
all the pairs obtained after calibration, we found that the
potential differences between samples in the calibrated false-
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negative pairs might still introduce confusion. For example,
there may be subtle differences for samples in a calibrated
false-negative pose pair, which may introduce confusion if
considering these two samples as the same pose. Accord-
ingly, we devise two novel calibrated CL losses for learning
the calibrated false-negative pose-aware pairs and false-
negative face-aware pairs, respectively. In the following, we
first introduce the normal CL loss for learning with normal
non-calibrated pairs and the new calibrated CL loss for cali-
brated false-negative pairs.

Before introducing the detailed loss formulation, we fol-
low our Algorithm 1 and use P to represent the positive set,
N to represent the negative pair set, and C to represent a set
of calibrated pairs. Since the calibrated set C consists of the
pairs calibrated from negative to positive, thus C ⊂ P .

Contrastive Loss for Normal Pairs. For normal non-
calibrated positive and negative pairs, we follow the typical
CL formulation to define the loss function. Then, we have the
learning loss for a positive pair vi , v j , ((vi , v j ) ∈ P − C):

L(vi , v j ) = −log

(
exp(cos(vi , v j )/τ)∑

(vi ,vk )∈N exp(cos(vi , vk)/τ)

)
, (6)

where temperature parameter τ controls the smoothness of
the similarity scores, i, j indexes over P but NOT including
calibrated pairs in C, and k indexes overN . Here, the vi and
v j represent the feature vectors extracted from the related
pair of samples.

In our case, vi and v j can be substituted by both the
pose-aware features �Fpi ,

�Fp j and the non-pose face-aware

features �F fi ,
�F f j . If calculated over pose-aware features,

we obtain pose-aware contrastive loss L p = L( �Fpi ,
�Fp j ).

Similarly, we have a non-pose face-aware contrastive loss
L f = L( �F fi ,

�F f j ). It is worth noting that we introduce two
different data augmentation methods, i.e., pose augmenta-
tion and image augmentation, for constructing pose-aware
and non-pose face-aware positive pairs, respectively. Details
about these augmentations can be seen Sec. 4.1.

Calibrated Contrastive Learning LossesFor the calibrated
pairs in C, we devise new calibrated contrastive learning
losses for pose-aware features and non-pose face-aware fea-
tures, respectively. In order to reduce the risk of confusion,
we introduce the calibrated CL losses with an adaptive
weighting similarity for the calibrated pairs, i.e., the pos-
itive loss weighted based on the neighborhood-cohesive
pair alignment score and cosine similarity. If two samples
in a calibrated pair have a high alignment score, we then
increase their importance in CL, otherwise, we decrease their
importance weights, resulting in a more adaptive optimiza-
tion scheme compared to the conventional CL scheme that
treats all positive pairs equally. That is, for a calibrated pair
(vi ′ , vk′

m
) ∈ C, we re-write the Eq.6 as follows:

L ′(vi ′ , vk′
m
)=−log

(
wi ′ · exp(cos(vi ′ , vk′

m
)/τ))∑

(vi ′ ,vk′ )∈N exp(cos(vi ′ , vk′)/τ)

)
,

(7)

where wi ′ = β · P A(vi ′ , vk′
m
) assigns weights based on the

pair alignment score for vi ′ , vk′
m
, β controls the strengths of

the weighting, β ∈ [0, 1], and L ′ represents the calibrated
contrastive loss for the calibrated pair (vi ′ , vk′

m
).

In particular, by substituting vi ′ , vk′
m

with pose-aware

features �Fp′
i
, �Fp′

km
and the non-pose face-aware features

�F f ′
i
, �F f ′

km
in Eq.7. If calculated over pose-aware features,

we obtain calibrated pose-aware contrastive loss L ′
p =

L( �Fp′
i
, �Fp′

km
). Similarly, we have a non-pose calibrated face-

aware contrastive loss L ′
f = L( �F f ′

i
, �F f ′

km
). It is worth

mentioning that, despite using similar substitutions, pose-
aware and non-pose face-aware learning objectives do not
share the same positive and negative training pairs. This
is because the two learning cases may have different cali-
brated pairs. As a result, in L ′

p and L ′
f , we used different β

for optimization. We discuss the effects of β in the experi-
ments, showing that the best performance is obtained when
β = 0.2 in L ′

p for calibrated pose-aware contrastive learn-
ing and β = 1 in L ′

f for calibrated face-aware contrastive
learning (see Fig. 6b).

Discussion 4: Different similarities for the calibrated
pairs. In Eq. 7, unlike normal CL loss only uses cosine
similarity on positive/negative pair learning, we introduce
an adaptive weighting similarity that integrates our pro-
posed NPA score with cosine similarity for the calibrated
pair learning. This aims to suppress the the risk of potential
inappropriate false-negative pair confusion, resulting inmore
robust contrastive learning on the calibrated pairs. We exper-
imented with alternative similarity calculations for learning
from the calibrated pairs, such as using only NPA score or
only cosine similarity, but they yielded unsatisfactory results.
The more discussion can be seen Table 8 in the experimen-
tal part. We believe that the combination of the two is more
adaptive to optimise the correction of the calibrated pairs,
i.e., the false-negative pairs.

3.5 Overall Learning Objectives

With the loss function defined in Eq. 7, we can achieve more
appropriate calibrated contrsative learning on the calibrated
samples. Together with Eq. 6 on non-calibrated normal sam-
ples, we can fulfill the SFRL by applying the two types of
contrastive losses on both the disentangled pose-aware fea-
tures and non-pose face-aware features.

To sum up, with the obtained normal contrastive losses
L p, L f and calibrated contrastive losses L ′

p, L ′
f , overall

learning objectives of our PCFRL framework can be the sum
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of the objectives discussed above. Meanwhile, in addition to
contrastive learning loss, we follow our original PCL work
(Liu et al., 2023) and apply a disentanglement loss L P DD to
make the network learn to disentangle pose-aware features
and non-pose face-aware features appropriately. The L P DD

is actually the combination of Eqs. 1 and 2. Please refer to
Liu et al. (2023) for more details. As a result, our complete
overall learning objectives can be written as:

L = L P DD + αpose · (L p + L ′
p) + α f ace · (L f + L ′

f ) (8)

where αpose and α f ace are two parameters weighting the
importance of pose-aware contrastive learning and non-pose
face-aware contrastive learning. To avoid hyperparameter
tuning, we define the two parameters as dynamic weights
whose values are determined by the Dynamic Weight Aver-
aging (DWA) (Liu et al., 2019) during training.

4 Experiments

4.1 Implementation Details

Following contrastive learning, we perform augmentations
to help obtain positive training pairs (i.e., augmentation on
Group A samples as mentioned in Sec. 3.3). However, we
would like to mention that the augmentation methods used to
generate positive pair for pose-aware learning and non-pose
face-aware learning are different. Specifically, the augmenta-
tions, including flipping and rotating, help generate positive
pairs for pose-aware learning. The other augmentations, such
as Gaussian blur, color jitter, random cropping, and Sobel fil-
tering, are primarily used to help generate positive pairs for
non-pose face-aware learning.

Our PCFRL framework is implemented using the PyTorch
platform. We trained each model for 1000 epochs using the
Adam optimizer (β1 = 0.9 and β2 = 0.999) and used cosine
annealing to reduce the reduction learning rate (0.0001). The
batch size and temperature parameter τ in Eq. 6 are set to
256 and 0.07, respectively.

Figure 4 shows the network architecture of our backbone
network B (see Fig. 2) and its twobranch networks. Referring
to FaceCycle (Chang et al., 2021), we adopted a shallow
network consisting of 10 convolutional blocks, 2 channel
attention blocks, and 2 residual basic blocks. The inspiration
for the channel attention module comes from self-attention,
which we only use to calculate the relationships between
channels, not spatial pixels. The subnet consists of 4 layers,
namely two 3 × 3 convolutional layers and 2 leakyReLU as
activation functions. For more detailed descriptions of the
framework, please refer to the PCL (Liu et al., 2023).

Fig. 4 The detailed network architecture of the backbone and the cor-
responding two subnets

4.2 Experimental Settings

4.2.1 Datasets

For self-supervised pre-training, we combined two large-
scale and in-the-wild face-related datasets, namely the Vox-
Celeb1 (Nagrani et al., 2017) and VoxCeleb2 (Ojala et al.,
2002). The VoxCeleb1 encompasses facial data from 1,251
individuals of diverse age groups and ethnicities. The Vox-
Celeb2 comprises data from 5,994 individuals. These two
datasets together consist of 299,085 video data.We extracted
video frames at a rate of 6 frames per second (fps). During
training, we resized the extracted video frames to 64 × 64
pixels (Chang et al., 2021).
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For facial expression recognition (FER) evaluation, we
used two widely-used FER datasets: FER-2013 (Goodfellow
et al., 2013) and RAF-DB (Li et al., 2020). FER-2013 con-
tains 28,709 training images and 3,589 testing images. For
RAF-DB, we focus on the basic emotion subset, i.e., 12,271
images from RAF-DB are used as training images and 3,068
images are used as testing images.

For face recognition (FR) evaluation, we employed two
FR datasets, namely LFW (Wiles et al., 2018) and CPLFW
(Zheng andDeng, 2018). LFWcomprises 13,233 face images
from 5,749 individuals. For the purpose of the FR task, LFW
extracts 6000 face pairs, with 3000 pairs consisting of two
face images from the same person. CPLFW, on the other
hand, includes 3000 pairs of frontal faces captured in dif-
ferent poses to introduce pose variations and thus enhance
intra-class differences. The experimental results are averaged
over 10 folds.

For facial AU detection evaluation, we used the DISFA
dataset (Mavadati et al., 2013) for evaluating our method.
The DISFA dataset has a total of 130,788 frames from 26
participants, each labeled with action units of varying inten-
sity levels (from 0 to 5). Frames with intensities greater than
1 are classified as positive, while those with intensities less
than or equal to 1 are designated as negative. The experimen-
tal results were obtained using a 3-fold cross-validation with
reference to Li et al. (2019).

For head pose estimation (HPE) evaluation, we assessed
both head pose regression and head pose classification tasks.
In the pose regression task, we conducted training using
the 300W-LP dataset (Sagonas et al., 2013), comprising
122,450 images, and subsequently performed evaluation on
AFLW2000 (Zhu et al., 2016), which includes 2000 images.
In the pose classification task, we followed the experimen-
tal setup outlined in Liu et al. (2021), and evaluated on the
BU-3DFE dataset (Yin et al., 2006), which contains 14,112
training images and 6264 validation images.

4.2.2 Evaluation Protocols

We adopted the standard linear evaluation protocol in SSL-
based methods (Chen et al., 2020; Chen and He, 2021; Chen
et al., 2021; Chang et al., 2021; Datta et al., 2018; He et
al., 2020; Li et al., 2019) for the validation of our method.
The linear classifier is a basic fully-connected layer, and it is
trained for 300 epochs using the fixed self-supervised face-
aware representation �Fs obtained from the backbone network
(see Fig. 2).

For a fair comparison, in line with references such as
Chang et al. (2021); Datta et al. (2018); Li et al. (2019),
we trained the images with different dimensions in different
downstream tasks. Specifically, for the FER task, we resized
the images to 100 × 100. The FR task used an image size

Table 1 Accuracy comparison of FER performance on FER-2013 and
RAF-DB datasets

FER-2013 RAF-DB
Method Accuracy(%) Accuracy(%)

Fully supervised

FSN (Zhao et al., 2018) 67.60 81.10

ALT (Florea et al., 2019) 69.85 84.50

Self-supervised (linear evaluation)

LBP (Ojala et al., 2002) 37.89 52.17

HoG (Dalal and Triggs, 2005) 45.47 63.53

FAb-Net (Jakab et al., 2018) 46.98 66.72

TCAE (Li et al., 2019) 45.05 65.32

BMVC’20 (Lu et al., 2020) 47.61 58.86

MoCo (He et al., 2020) 47.24 68.32

FaceCycle (Chang et al., 2021) 48.76 71.01

SimCLR (Chen et al., 2020)* 49.51 71.06

PCL (Liu et al., 2023)* 56.81 74.47

Ours 57.30 75.68

Bold numbers represents best results
Note: * indicates that the result is reproduced by authors

of 128 × 128, while the HPE applications all employed an
image size of 256 × 256.

4.3 Overall Performance on Different Downstream
Tasks

4.3.1 Results on FER

We evaluated the performance on the FER task using the
model trained via PCFRL and the state-of-the-art methods.
The experimental results are shown inTable 1, demonstrating
that our proposed method has better performance compared
to other methods. Compared with PCL (Liu et al., 2023),
PCFRL achieves a relative improvement of 0.86% on the
FER-2013 dataset and an accuracy increase of 1.62% on the
RAF-DBdataset. This shows that PCFRL is capable of learn-
ing superior self-supervised facial representations.

4.3.2 Evaluation for FR

We also evaluated our method on the face recognition task.
The results, as shown in Table 2, indicate that our learned
self-supervised pose-aware facial features outperform other
methods. Our approach achieved the highest accuracies in
both the LFW and CPLFW datasets, at 79.89% and 66.17%,
respectively. Compared with the state-of-the-art PCL (Liu et
al., 2023), our method achieved a relate increase of 0.21% on
the LFW dataset and 2.41% on the CPLFW dataset, indicat-
ing that the proposed negative-false pair calibration method
and calibrated CL losses effectively boost the performance
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Table 2 Accuracy comparison
of FR on the LFW and CPLFW
datasets

LFW CPLFW
Method Accuracy(%) Accuracy(%)

Fully supervised

VGG-Face (Parkhi et al., 2015) 98.95 84.00

SphereFace (Liu et al., 2017) 99.42 81.40

ArcFace (Deng et al., 2019) 99.53 92.08

Self-supervised (Linear evaluation)

LBP (Ojala et al., 2002) 72.44 -

VGG (Datta et al., 2018) 72.20 -

MoCo (He et al., 2020)* 65.88 57.82

SimCLR (Chen et al., 2020)* 75.97 62.25

FaceCycle (Chang et al., 2021)* 74.12 63.35

PCL (Liu et al., 2023)* 79.72 64.61

Ours 79.89 66.17

Bold numbers represents best results
Note: * indicates that the result is reproduced by authors

of pose awareness of self-supervised facial representation
learning.

4.3.3 Results on Facial AU Detection

PCFRL follows the approach described in Li et al. (2019),
which involves employing a binary cross-entropy loss for
training a linear classifier in the facial AU detection task.
Table 3 reports the experimental results on the DISFA
dataset. We compared our method not only with state-of-
the-art self-supervisedmethods, but also with full supervised
methods. As can be seen from the table, our PCFRL outper-
forms the other methods in terms of the average F1 score.
Specifically, PCFRL improves the average F1 by 3 points
over PCL and 1.8 points over fully supervised learningmeth-
ods. This suggests that PCFRL achieves more effective facial
representation, thanks to the incorporation of neighborhood-
cohesive pair alignment for enhanced selection of negative
and positive pairs, resulting in amore robust learning process.

4.3.4 Results on HPE

We assessed our method in two pose-related HPE tasks,
including head pose regression and pose classification. Fol-
lowing the experimental settings in Liu et al. (2023), head
pose regression and classification tasks were pre-trained
using the 300W-LP dataset and BU-3DFE, respectively. In
the linear evaluation, the head pose regression task was
assessed on AFLW2000, while the head pose classifica-
tion task was evaluated on BU-3DFE. Comparison results
with various SSL methods are presented in Table 4. As can
be seen from the table, our method surpasses other self-
supervised methods in both two tasks, achieving the lowest

MAE (12.08%) on AFLW2000 and the highest accuracy
(98.96%) on BU-3DFE.

4.4 Performance of Different Similarity Estimation
Methods-based Calibration on Contrastive
Learning Frameworks

To evaluate the effectiveness of our proposed NPA-based
false-negative pair calibration, we applied it to two CL-
based self-supervised methods, including PCL (Liu et al.,
2023) and SimCLR (Chen et al., 2020). As shown in Table
5, our NPA-based calibration improved the implementation
of both SimCLR and PCL in four facial downstream tasks.
For instance, in the FER task, our method exhibited relative
improvements of 1.62 points over PCL and 0.72 points over
SimCLR; in the FR task, it relatively enhanced the accuracy
by 2.37 points compared to PCL and 1.93 points compared
to SimCLR. These results validate that our method has bet-
ter facilitation for PCL, which more effectively calibrates
both inappropriate pose-aware and face-aware negative pairs,
resulting in robust pose awareness facial representation learn-
ing.

Moreover, in Table 5, we also compared our NPA method
and the cosine similarity (Rahutomo et al., 2012) for false-
negative pair calibration in PCL (Liu et al., 2023) and
SimCLR(Chen et al., 2020), respectively. The results demon-
strate that our proposed NPAmethod outperforms the cosine
similarity method by a significant margin in all four down-
stream tasks, such as an improvement of 2.27 points for PCL
onRAF-DB.This indicates that our proposedNPA-based cal-
ibration method can be considered a versatile, plug-and-play
module for improving the performance of various CL-related
frameworks.

123



International Journal of Computer Vision

Table 3 Evaluation for Facial AU detection on the DISFA dataset using the F1 score

Methods/AU 1 2 4 6 9 12 25 26 ave

Supervised DRML (Zhao et al., 2016) 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net (Li et al., 2017) 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

JAA-Net (Shao et al., 2018) 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

Self-superivised SplitBrain (Zhang et al., 2017) 13.1 10.6 35.7 40.2 30.2 57.5 77.4 40.3 38.1

DeformAE (Shu et al., 2018) 17.6 12.3 46.7 43.5 26.0 62.7 64.8 47.6 40.1

FAb-Net (Jakab et al., 2018) 15.5 16.2 43.2 50.4 23.2 69.6 72.4 42.4 41.6

TCAE (Li et al., 2019) 15.1 16.2 50.5 48.7 23.3 72.1 72.4 42.4 45.0

TCAE (Li et al., 2019) * 10.5 13.3 20.9 18.8 7.5 44.7 57.8 9.9 22.9

FaceCycle (Chang et al., 2021)* 26.4 10.2 37.3 21.5 25.0 71.8 84.2 34.7 38.9

SimCLR (Chen et al., 2020)* 40.5 46.9 53.8 33.5 24.9 74.7 85.0 35.6 49.4

PCL (Liu et al., 2023)* 53.8 44.9 58.1 37.2 53.2 73.1 86.5 31.3 54.8

Ours 54.5 62.1 60.3 36.6 47.4 73.6 86.0 32.6 57.8

Bold numbers represents best results
Note: * indicates that the result is reproduced by authors

Table 4 Evaluation on two HPE
tasks, including pose regression
and classification

AFLW2000 (pretrained on 300W-LP) BU-3DFE

Yaw↓ Pitch↓ Roll↓ MAE↓ Accuracy (%)↑
FaceCycle (Chang et al., 2021) 11.70 12.76 12.94 12.47 98.82

MoCo (He et al., 2020) 28.49 16.29 15.55 20.11 75.33

SimCLR (Chen et al., 2020) 11.20 19.86 12.08 14.38 98.85

PCL (Liu et al., 2023) 9.86 16.59 10.62 12.36 98.95

Ours 9.42 16.50 10.32 12.08 98.96

Bold numbers represents best results
Note: ↓ represents the smaller is better. ↑ represents the larger is better

Table 5 Performance of NPA-based and cosine similarity-based false-negative pair calibration across various contrastive learning frameworks for
four face-related downstream tasks

CL framework Cosine-based
calibration

NPA-based
calibration

RAF-DB CPLFW DISFA BU-3DFE

SimCLR (Chen
et al., 2020)

x x 71.06 62.25 49.40 98.85

� x 71.55 63.13 51.78 98.87

x � 71.57(+0.51) 63.45(+1.2) 52.07(+2.67) 98.88(+0.03)

PCL (Liu et al.,
2023)

x x 74.47 64.61 54.8 98.95

� x 73.41 65.79 50.49 98.84

x � 75.68(+1.21) 66.17(+1.56) 57.80(+3) 98.96(+0.01)

Bold numbers represents best results

4.5 Ablation Study

4.5.1 Effect of Different Components

In order to evaluate the validity of the main components in
our PCFRL, Table 6 presents the ablation study results of
gradually introducing the PCL loss (i.e., L P DD + L p + L f )
(Liu et al., 2023), NPA-based false-negative pair calibration

(i.e.,NPA-calibration), calibrated pose-aware and face-aware
contrastive learning loss (i.e., L ′

p + L ′
f ) into the baseline

(namely SimCLR (Chen et al., 2020)) for three facial down-
stream tasks, including FERon theRAF-DBdataset (Li et al.,
2020), FR on the CPLFW dataset (Zheng and Deng, 2018),
and AU detection on the DISFA dataset (Mavadati et al.,
2013). Specifically, in the FER task, the baseline achieved
71.06% FER accuracy. Then, we introduced the PCL loss,
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resulting in what we now refer to as the PCL (Liu et al.,
2023), and achieved an average accuracy of 74.47%. Adding
the false-negative pair calibration slightly improves the PCL
performance by 0.16% on RAF-DB. The possible reason is
that the estimated number of false negatives remains small,
and the benefits of NPA may not be pronounced without cal-
ibrated contrastive losses. However, when integrated with
these losses, NPA significantly improves performance on
RAF-DB. Additionally, our NPA-calibration method shows
consistent benefits, with a 0.54% and 1.2% direct improve-
ment on CPLFW and DISFA, respectively. Overall, the
ablation study suggests that both the proposed false-negative
pair calibration and calibrated contrastive learning serve as
effective methods to enhance robust self-supervised facial
representation.

4.5.2 Effects of Different Calibration Methods

We also conducted experiments to analyze the impact of dif-
ferent calibration methods for identifying the false-negative
pairs, including the current nearest neighbor method (NN)
(Shu et al., 2022), top-K methods (e.g., top-2 and top-5)
(Dwibedi et al., 2021; GE et al., 2023), and our thresholding-
based calibration method. The comparison results are pre-
sented in Table 7. From the results, we can observe that the
our proposed thresholding-based calibration method signif-
icantly improves the PCL with a relative increase of 1.62
points, indicating that correctly identifying the false nega-
tive pairs in a training batch can effectively augment the
CL performance. Moreover, we find that calibrating more
false-negative pairs, e.g., top-2 and top-5, can affect the CL
performance, leading to the significant degradation of perfor-
mance (about 6.67 points). The reason for this is that when
the selected K is greater than 2, the second false negative
sample found is likely to be wrong, as shown in Fig. 8. In
addition, Fig. 5 illustrates the pair alignment scores (PA) to
input instances in some specific training batches. One can
see that, in theses batches, the similarity scores are below
the established threshold (T=1) in NPA. As a result, it does
not generate false negative samples in these training batches.
From the figure, our thresholdingmethod successfully avoids
labeling these true negative samples, unlike the traditional
TOP-K method, which incorrectly labels them as false neg-
atives. This distinction further underscores the reliability
of our thresholding method. Instead of directly selecting
top-K nearest samples as the potential false-negative pairs,
our thresholding-based calibration method obtains the opti-
mal performance by fully considering the distribution of
neighborhood-cohesive pair alignment scores in a training
batch, with a great robustness and effectiveness.

Fig. 5 Visualization of the pair alignment score (PA) in some training
batches, where no false-negative samples can be calibrated because the
maximum alignment scores are below the threshold T

Fig. 6 Effects of key parameters for the FER task on the RAF-DB
dataset. a Performance with varying α, b Performance with varying
values of β in two calibrated CL losses

Table 7 Performance of different sample calibration methods for the
FER task on the RAF-DB dataset

Different Strategies Accuracy on FER (%)

PCL 74.47

Nearest neighbor (Top-1) 75.33

Top-2 71.10

Top-5 67.68

Our thresholding-based calibration 75.68

Bold numbers represents best results

4.5.3 Effects of Different Similarity Optimization in
Calibrated CL Losses

To thoroughly evaluate the different similarity metrics for
the calibrated pairs in calibrated CL losses, we conducted
different optimization methods for the calibrated pairs and
studied their effects for the FER task on the RAF-DB dataset.
Specifically, we implemented the pose-aware and non-pose
face-aware calibratedCL losses based on four similaritymet-
rics for calibrated pair optimization: only cosine similarity
(Shu et al., 2022), attention-based similarity (GEet al., 2023),
and adaptive weighting similarity (ours). The comparison
results can be shown in Table 8. One can see that our adaptive
weighting similarity obtains the best performance, demon-
strating its superior adaptability in optimizing the correction
of calibrated pairs.
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Table 6 Effects of different
modules in our PCFRL on three
downstream tasks, i.e., FER,
FR, and facial AU detection

Baseline (SimCLR) PCL NPA-calibration L ′
f + L ′

p RAF-DB CPLFW DISFA

� 71.06 62.25 49.4

� � 74.47 64.61 54.8

� � � 74.63 65.15 56.0

� � � � 75.68 66.17 57.8

Bold numbers represents best results

Fig. 7 The distributions of neighborhood-cohesive pair alignment
scores, maximum alignment scores, and accuracies. a The distribu-
tion of the neighborhood-cohesive pair alignment scores for non-pose

face-aware features in a training batch, b the distribution of maximum
alignment score of each sample for face-aware features in a training
batch, c FER and FR accuracy with various thresholds T

Table 8 Performance of different similarity optimization schemes in
calibrated CL losses on the FER task with the RAF-DB dataset

Similarity optimization Accuracy on FER (%)

Only cosine similarity 73.52

Attention-based similarity 72.98

Only NPA score 73.60

Adaptive weighting similarity (ours) 75.68

Bold numbers represents best results

4.5.4 Effects of Key Parameters in PCFRL

We further discuss the influence of the key parameters in our
PCFRL approach.

Performance with various α We evaluated the effects of
the parameter α in Eq. 3, which is a trade-off parameter that
determines the importance of neighborhood-cohesive sample
consistency N S over cosine similarity cos. Figure 6a presents
the FER accuracy curves with the variation of α. One can see
that the accuracy reached the highest 75.68% when we set
α to 10. The results show that the neighborhood-cohesive
sample consistency N S provides more comprehensive mod-
elling of face sample relationships than cos. Moreover, to
verify the reliability of the T setting, Fig. 7c illustrates the
impact of varying threshold values (ranging from 0 to 20)
on FER and FR performance, respectively. The results show
that the trend in threshold selection is consistent across both

tasks, with the best performance achieved when T = 1 for
both FER and FR tasks. Additionally, the slight variations
in results across different thresholds indicate that the overall
experimental outcomes remain robust across various tasks.
By leveraging the distribution of alignment scores within
the current training batch, our proposed thresholding-based
calibration method demonstrates greater adaptability to both
types of sample pairs: pose-aware and non-pose face-aware
pairs.

Performance with various β In addition, within our pro-
posed calibrated CL loss, we conducted a detailed evaluation
of the effects of its hyperparameters, i.e., β, as defined in
Eq. 7. Figure6b illustrates the performance with varying β

in the calibrated pose-aware CL loss L ′
f and calibrated face-

aware CL loss L ′
p, respectively. From the Fig. 6b, we observe

that the optimal results are achieved when β is set to 1 for
L ′

f and 0.2 for L ′
p, respectively.

Performance with various T in calibration The threshold
T in calibration is an adaptive parameter for determining
false-negative pairs in the pose-aware features and non-
pose face-aware features, respectively, in each training batch.
Instead of using the top-K method for calibrating false-
negative pairs, we introduce a adaptive threshold T for
dynamically calibrating the inappropriate pairs by analyz-
ing the distribution of the maximum alignment score among
all negative pairs in each training batch. In particular, Fig. 7a
shows the distribution of neighborhood-cohesive pair align-
ment scores between negative pairs in the training batch,
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Fig. 8 Comparison of cosine similarity (cos) and our proposed
neighborhood-cohesive pair alignment neighborhood-cohesive pair
alignment score (P A) for false-negative pair calibration. a Calibration
for pose-aware false-negative pairs on the HPE task, b calibration for

non-pose face-aware false-negative pairs on the FER task. It’s worth
noting that the calibration threshold is set to T = 1 in this training
batch

and Fig. 7b displays the distribution of the maximum align-
ment scores for each sample in the training batch. According
to the two distributions, we observed that most of both
neighborhood-cohesive pair alignment scores and the maxi-
mum alignment scores are distributed around to 1. Therefore,
we set T to 1 in this training batch. Similarly, in another
training batch, we conducted the similar threshold setting
process. Moreover, to verify the reliability of the T setting,
Fig. 7c illustrates the impact of various threshold values rang-
ing from 0 to 20 on FER performance. From the results, it

is evident that our thresholding-based calibration achieves
the best performance, i.e., T = 1 selected in this batch. By
relying on the distribution of alignment scores in the current
training batch, our proposed thresholding-based calibration
is more adaptable to the two types of sample pairs, namely
pose-aware pairs and non-pose face-aware pairs.
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Table 9 Accuracy on image classification tasks for STL10 and
CIFAR10 datasets

SimCLR NPA-calibration SLT10 CIFAR10

� 75.39 70.32

� � 76.30(+0.91) 71.14(+0.82)

Bold numbers represents best results

Table 10 Comparison of computational complexity

Time (s) FLOPs (G) MACs (G) Params (M)

PCL 0.0547 17.53 7.56 16.8

Ours 0.0562 17.53 7.56 16.8

4.5.5 Generalization for General Image Classification

To further validate the generalization capabilities of ourNPA-
calibration method, we conducted experimental research
on two standard image recognition tasks using the Sim-
CLR model integrated with our proposed approach. The
experiments were carried out on two widely used image
classification datasets, namely STL10 (Coates et al., 2011)
and CIFAR10 (Krizhevsky and Hinton, 2009). The results
in Table 9 demonstrated significant performance enhance-
ments, with our method yielding a 0.91% improvement in
accuracy on the STL10 dataset and a 0.82% improvement on
the CIFAR10 dataset. These findings not only underscore the
effectiveness of the NPA-calibration method but also high-
light its generalization potential across other self-supervised
learning frameworks in diverse visual tasks.

4.5.6 Analysis of Computational Complexity

Here we have selected four indicators to evaluate the compu-
tational complexity of our proposed approach, i.e., the time
taken to run an epoch, FLOPs,MACs, andparams.The exper-
imental results are shown in Table 10. As we can see from
the table, the FLOPs, MACs, and params values have not
changed, because our method has not changed the backbone
of the model. And the time it takes to run an epoch is not
significantly increased as you can see from the table. There-
fore, compared to PCL, our approach obtains a performance
improvement without introducing an increase in computa-
tional complexity.

4.6 Qualitative Analysis andVisualization

4.6.1 Visualization on False-negative Pair Calibration for
Poses

To illustrate the qualitative results of calibration, Fig. 8a
shows the comparison of pose-aware false-negative pair cal-

Fig. 9 The distributions of the maximum alignment scores for pose-
aware and face-aware negative pairs. The distribution discrepancy
indicates that the pose-aware false-negative pair calibration is signif-
icantly different from the face-aware false-negative pair calibration

ibration via our NPA method and cosine similarity (Dwibedi
et al., 2021). In the figure, the first column shows the false-
negative pairs that should be calibrated, followed by showing
the pair calibration obtained by cosine similarity and our
NPA, respectively. The cosine similarity yielded several inap-
propriate results (see the red boxes), suggesting that this
metric could not accurately identify the false negative pairs
from pose-aware features. In contrast, our NPA correctly
identified all false-negative pairs that have the same poses
due to the comprehensive consideration of the relationships
among all coherent neighboring samples.

4.6.2 Visualization on False-negative Pair Calibration for
Non-pose Faces

Figure 8b presents a comparison of false-negative pair cal-
ibration from non-pose face-aware features by using our
NPA and the cosine similarity (Dwibedi et al., 2021) on
the FER task. One can see that our NPA method effectively
calibrates all face-aware false-negative pairs that have the
same facial expressions. It provides further evidence that our
NPAmethod outperforms the conventional cosine similarity-
based calibration, thanks to comprehensive consideration of
relationships among all coherent neighborhood samples.

4.6.3 Calibration Discrepancy between Pose-aware and
Face-aware Pairs

In Fig. 9, we display the distributions of the maximum align-
ment scores for pose-aware and face-aware pairs in a training
batch. According to the distributions, it is evident that the
calibrated pose-aware and face-aware false-negative pairs
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Fig. 10 The features learned by
PCL and our PCFRL
respectively in t-SNE feature
visualization. a Self-supervised
facial features extracted from
PCL and our PCFRL for FER
(on RAF-DB), respectively, b
non-pose face-aware features
extracted from PCL and our
PCFRL for FER (on RAF-DB),
respectively, c non-face
pose-aware features extracted
from PCL and our PCFRL for
HPE (on BU-3DFE),
respectively, d the disentangled
pose-aware and non-pose
face-aware features via PCL and
PCFRL, respectively

through NPA exhibit significant differences. This also shows
that our proposed thresholding-based calibration procedure
is specifically important because the pose-aware features and
non-pose face-aware features do not share the same positive
and negative-pair selection.

4.6.4 Feature Visualization

In Fig. 10, we utilized t-SNE to visualize the feature distribu-
tions obtained by PCL and PCFRL, respectively. To facilitate
a clear comparison, we visualized (a) the self-supervised
facial features �Fs before the PDD module for the FER task,
(b) non-pose face-aware features �F f for the FER task, (c)
pose-aware features �Fp for the HEP task, and (d) the disen-
tangled features �Fp + �F f . Comparing these features learned
by the previous PCL (Liu et al., 2023), our improved PCFRL
obtainedmore discriminated self-supervised representations.
This is attributed to the more accurate false-negative pair cal-
ibration, indicating a stronger facial representation learning
capability compared to PCL.

5 Conclusion

In this paper, we propose a novel Pose-disentangled Con-
trastive Facial Representation Learning framework, called
PCFRL, for pose awareness self-supervised facial rep-
resentation. To achieve this, PCFRL introduces a novel
neighborhood-cohesive pair alignment method to calibrate
false-negative pairs with pose-aware features and non-pose
face-aware features.Moreover, two new calibrated CL losses
are devised to dynamically learning on the calibrated pairs
via an adaptive weighting strategy, ultimately enhancing the
learning of robust, pose-aware self-supervised facial rep-
resentations. The effectiveness of our proposed PCFRL is
demonstrated in four face-related downstream tasks, includ-

ing FER, FR, facial AU detection, and HPE. Extensive
experiments show PCFRL’s superiority in enhancing the
learning capacity compared to the previous PCL method.

Despite the significant achievements, there are still areas
in which our PCFRL could be improved. For instance, intrin-
sic noises within facial images, such as variations in illumi-
nation, shadows, occlusions, and so on, can be challenging to
disentangle, thereby affecting PCFRL’s performance. In the
future, we plan to introduce physics-informed prior knowl-
edge to further disentangle these complex noises for robust
unsupervised facial representation.
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